Facial Feature Extraction using Independent Component Analysis
نویسندگان
چکیده
The purpose of this paper is to evaluate the results of various Independent Component Analysis (ICA) algorithms used for facial feature extraction. Face recognition algorithms results are mainly based on feature extractions from facial images. We have done various experimentations for facial feature extraction using ICA with global and local features from facial images. We have explored FastICA and KICA algorithms with variation in facial pose, changes in illumination and facial expressions.
منابع مشابه
A review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملFeature selection using genetic algorithm for classification of schizophrenia using fMRI data
In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...
متن کاملFacial Feature Extraction Using Geometric Feature and Independent Component Analysis
Automatic facial feature extraction is one of the most important and attempted problems in computer vision. It is a necessary step in face recognition, facial image compression. There are many methods have been proposed in the literature for the facial feature extraction task. However, all of them have still disadvantage such as not complete reflection about face structure, face texture. Theref...
متن کاملNormalization Discriminant Independent Component Analysis
In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016